If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+2x-92=0
a = 11; b = 2; c = -92;
Δ = b2-4ac
Δ = 22-4·11·(-92)
Δ = 4052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4052}=\sqrt{4*1013}=\sqrt{4}*\sqrt{1013}=2\sqrt{1013}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1013}}{2*11}=\frac{-2-2\sqrt{1013}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1013}}{2*11}=\frac{-2+2\sqrt{1013}}{22} $
| -2n^2-4=0 | | 2(3x+6)+4x=32 | | x/25=0.5 | | 2/x=7/x-1/5 | | 7/10d+56=7 | | x^2-8+97=0 | | 6x+3=99+81 | | 5x2-15=4x2-2x | | x2/3=1/4x+15 | | x^2-4x-25=-4x | | 7.5x+0.6x=-2x-31.2 | | 0=35-(0.8*d) | | 3w+12=40 | | x^2-x-18=-4x | | 3/11=x/6 | | |5x+4|=11 | | x^2+11x+15=-3 | | 1/16+1/12=1/x | | 4x+4x-9=39-8 | | -12=3(4c=5) | | 1/8+1/20=1/x | | x^2-6x+20=6x | | 4y(5y+3)=186 | | x^2-x=3x | | 3(3x+1)=6x | | 4/7-2/5=x/25 | | 6xX(-3)=198 | | 2(8w+3)=2(8w-6) | | 4^4x+1=7^x-3 | | 2(x+4)-7=25 | | 3(w+1)-5=2(w-1)+w | | (2x−10)(3x+12)=0 |